Illinois State University
Department of Geography-Geology at Illinois State University
Jump over the site's masthead's navigation bar.
Jump over the site's left-side navigation bar.

Research Opportunities

All undergraduate majors are eligible and encouraged to participate in research.  Research opportunities can be a part of an independent study with a faculty member, as a part of a class assignment, or participating in a funded project.  All Geology faculty members are involved in undergraduate research because we believe that it significantly enhances the educational experience.  Student research enhances observational and interpretative skills, develops oral and written skills, and provides a connection between the classroom and the real world.  Some recently completed or ongoing undergraduate research projects are outlined below.


Surficial Geologic Map of the Danvers 7.5 Minute Quadrangle, McLean-Woodford County, Illinois

James Foote


The Danvers Quadrangle is located in McLean and Woodford counties and spans from 40 30’ to 40 37’ 30” north latitude and 89 15’ to 89 07’ 30” west longitude. This map was prepared using soil maps from the McLean and Woodford County Soil Survey. Parent materials were identified and grouped together, creating formation boundaries. Units had to be at least 2 m in thickness to be mapped. Well data was secured through the Illinois State Geological Survey (125 wells). After boundaries were delineated, a field check was conducted to adjust positions of contact. Quaternary units in excess of 100 m overlie the local bedrock valleys. Major Quaternary units include Cahokia alluvium, the Wedron Group till, the Mason Group glacial outwash, and the Peoria loess. Today, many rivers and streams are still present in the Danvers Quadrangle, and thus Holocene Cahokia alluvium is abundant in less than 5 meters of thickness. The El Paso and Bloomington Moraines are represented by the Wedron Group, which is Tiskilwa till and Lemont formation respectively. These till units consist of pink and grey diamicton units that are interbedded with proglacial river and lake sediments. Henry outwash is a sand/gravel unit of the Mason Group and is found south of the Bloomington Moraine less than 10 meters in thickness. Peoria Silt is fine-grained yellow-orange silt and clay that covers much of the Quadrangle.


Surficial Geologic Map of the Arrowsmith 7.5 Minute Quadrangle, McLean County, Illinois

Caelan Murphy


A surficial geologic map of the Arrowsmith 7.5’ Quadrangle was constructed, spanning from 40 22’ 30’’ to 40 30’ north latitude and 88 45’ to 88 37’ 30’’ west longitude. Sediment unit parent materials were identified using McLean County Soil Survey data, they were then grouped together to create formation boundaries. Thickness of major units was determined using water well data, and only considered present at the surface if greater than 2 meters in thickness. Quaternary sediment units deposited during the Woodfordian glacial advance and modern stream alluvium dominate the surficial geology. Quaternary units reach over 100 meters in thickness where they overlie buried bedrock valleys. Major Quaternary mapping units include the Wedron Group, the Henry Formation, the Peoria Formation, and the Cahokia Alluvium. The Wedron Group includes the Tiskilwa till and Lemont Formation, which consist of diamicton units that are interbedded with proglacial river and lake sediments. The Lemont Formation is grey in color and exists to the north of the Bloomington Moraine, while the Tiskilwa till is pink in color and lies to the south of the Bloomington Moraine. The Henry Formation is prominent in the northern half of the quadrangle (up to 10 meters thick) and consists of sand and gravel that was deposited in glacial rivers and outwash fans. The Peoria Formation (up to 3 meters thick) forms the top layer in much of the southern half of the mapping area and consists of fine-grained yellow silt/clay and is interpreted as loess deposits. The Cahokia Alluvium (less than 5 meters thick) is made up of modern river deposits of sand, gravel and silt. A traditional field check was later conducted to ensure that contacts were properly placed. Cross sections were also constructed by subsurface correlation of water well records.


Surficial Geologic Map of the Chenoa 7.5 Minute Quadrangle, McLean-Livingston County, Illinois

Raymond Olson


Surficial geologic mapping at the 1:24,000 scale has been completed for the Chenoa 7.5 Minute Quadrangle in the north-central part of McLean County, IL. The longitude of the map ranges between 8845ˈ to 8837ˈ30”, and the latitude ranges from 4045ˈ to 4037ˈ30”. The map was created as a digital PDF file allowing for quick access to the map and introduces compatibility to other mapping programs for local geology to be completed. The map was mostly ground moraine and it was constructed using soils survey data, water well log, and outcrop descriptions. Using well log data, we were able to obtain the thicknesses of some of the formations; The thickness of the Quaternary units can span over 100m in paleovalleys. The youngest Quaternary units present are within the Mason Group consisting of the Peoria Silt and the Cahokia alluvium. The Cahokia formation contains poorly sorted sand, silt, and clay sized grains that are associated with modern stream systems with thicknesses less than 2m thick. The Peoria Formation contains yellow-brown silt and clay, which is interpreted as loess. The Henry Formation is a sand and gravel unit that forms terraces in valley train outwash systems and alluvial fans varying in thickness between 3-20m. The Wedron Group dominates the north east to the central part of the quadrangle and it contains the Lemont Formation, which is a grey diamicton that is deposited on a ground moraine with thicknesses ranging between 5 and 10m. The Cahokia alluvium occurs in the north-central areas of the Quadrangle and the Peoria silt is found in the southwest portion of the quadrangle. In some regions in the north west area of the Quadrangle the Henry Formation is layered within the Lemont Formation. After the map was drafted a field check was conducted to validate contact placement and water well records.


Surficial Geologic Map of the Holder 7.5 Minute Quadrangle, McLean County, Illinois

Evan Meinzer


The Holder Quadrangle is located in McLean County and spans from 40 to 40 22’ 30” north latitude and 88 52’ 30” to 88 45’ west longitude. The majority of the quadrangle consists of the Woodfordian moraine front and the adjacent ground moraine The Quaternary units overlie Pennsylvanian strata of a variety of lithologies. Quaternary units exceed 100 m in thickness where they overlie buried bedrock valleys. Major Quaternary sediment units present in the area are the Wedron Group till units, the Mason Group meltwater deposits, the Peoria Silt, and the Cahokia Alluvium. Carmi Formation lacustrine deposits are also locally present. The Wedron Group consists of the Tiskilwa till (south of the Bloomington Moraine) and the Lemont Formation (north of the Bloomington Moraine). These till units are clay-rich diamicts that are pink and grey in color, respectively. The Peoria Silt is fine-grained yellow-orange silts and clays which covers most of the area in a thin veneer (as much as 2-3 m). The Mason Group is an outwash sand/gravel unit most prominent south of the Bloomington moraine. It is less than 8-10 meters in thickness. The Cahokia Alluvium is less than 5 meters in thickness and is associated with Holocene drainage systems. This map was prepared using soil maps from the McLean County Soil Survey. Parent materials were identified and grouped creating formation boundaries. Units had to be at least 2 m in thickness to be mapped. Water well data was evaluated to indicate thickness of major surficial deposits to indicate their viability as mappable units. After boundaries were delineated, a field check was conducted to adjust contact placement. Cross sections were prepared and subsurface correlations were determined using water well records. More than 100 well records on repository at the Illinois State Geological Survey for the Holder Quadrangle were analyzed as part of this study.


Provenance Analysis of the Fort Union Formation in the Western Big Horn Basin using U-Pb Detrital Zircon Geochronology

Andrea Leonard


The Paleocene Fort Union Formation was studied at three localities in the western Bighorn Basin of western Wyoming.  Detrital zircon U-Pb geochronology was used to determine the provenance of these rocks to better understand the transition between Sevier thin-skinned and Laramide thick-skinned deformation.  Uppermost Fort Union strata were sampled near the WY-MT state line near Belfry, MT, just east of Cody, WY and north of Meteetse, WY.  A total of 248 zircons were analyzed at the University of Arizona Laserchron Laboratory.  Proterozoic zircons dominated each of the samples, ranging from 48-63% of each sample.   Numerous Proterozoic orogens supplied these zircons.  Mesozoic zircons were the next most abundant component in each sample, ranging in proportion from 20-23%.  Archean zircons comprised 8-15% of each of the samples.  Paleozoic zircons were the smallest fraction, accounting for only 2-8% of the zircons analyzed.  The preponderance of Proterozoic zircons indicates that the principal source area of the Fort Union in the Big Horn Basin is the Sevier Highlands to the west.   These zircons were likely recycled from Neoproterozoic metasedimentary rocks that are common throughout that area.  The presence of a significant proportion of upper Cretaceous zircons suggests that areas of the Idaho Batholith were exposed as well and supplying sediment.   The paucity of Archean zircons indicates that the Beartooth uplift was not as yet unroofed, and thus not a significant source area during Fort Union deposition.  Archean zircons present could also have been recycled from distal westerly sources.


Age and Provenance of Quartzite Clasts in Tertiary Conglomerates, Western Big Horn Basin, WY Using Detrital Zircon U/Pb Geochronology


Mary Ann Scroggins

Quartzite cobble conglomerates occur within the Tertiary strata of the western Big Horn Basin.  Our goal in this research is to characterize the age and provenance of these clasts using detrital zircon U/Pb Geochronology.  As part of this study, we sampled three different formations (#332 zircon analysis total).  The Paleocene Fort Union Formation was sampled along Grass Creek (#83).  The lower Eocene Willwood Formation was sampled at two localities:  along Gooseberry Creek (#84) and near Meeteetse (#96).  The middle Eocene Wapiti Formation was sampled at Jim Mountain (#70).   Meso- and Paleoproterozic (1300-2000 Ma) dominated each of the samples, ranging from 79-87%.  Each locality also contained smaller amounts of Archean (>2500 Ma 7-17%) and Grenville (950-1200 Ma; 6-10%).  The most abundant age for each sample is 1650-1700 Ma.  The similarity of detrital zircon signatures indicates that these rocks were most likely derived from the same source area, which is the Sevier highlands to the west.  The sandstone protolith of these quartzites were eroded from Yavapai-Mazatzal rocks and then transported north to the Neoproterozoic continental margin of Idaho and Montana.  These quartzites were then uplifted during the Sevier orogeny, were weathered, and shed as clasts east into the Western Interior Basin during early Tertiary time.  These quartzite clasts have similar deterital zircon spectra to the time equivalent Harebelle and Pinyon Formations to the west.


Age and Provenance of Eocene Volcanic Rocks at Hominy Peak, Northern Teton Range, WY


Monica Mustain

The Eocene volcanic rocks at Hominy Peak represent a southwestern outlier of the Absaroka Volcanic Supergroup.  As part of this study, we used U-Pb dating methods to determine the zircon age spectrum on an ash fall tuff (#32), a polymict agglomerate matrix (#85) and a quartzite cobble conglomerate matrix (#77) from the Hominy Peak Formation.  The quartzite cobble conglomerate has a zircon spectrum that is 41% Archean, 30% Proterozoic, 20% Eocene, and 8% Mesozoic.  Age of the 10th youngest grain is 50.44 +0.96 -0.68 Ma.  The polymict agglomerate had a surprisingly diverse zircon suite that includes 48% Proterozoic, 25% Eocene, 13% Archean, 4% Paleozoic, and 3% Mesozoic ages.  The age of the 10th youngest grain for this unit is 49.25 +0.91 -1.20 Ma.  The ash fall tuff spectrum consisted of 63% Eocene zircon, with a variety of Paleozoic and Precambrian zircons also present.  The weighted mean age of this unit is 50.3 +/- 1 Ma.  The zircon provenance of the Hominy Peak Formation is diverse.  These rocks contain a surprisingly high proportion of non-Eocene zircons in what has been interpreted to be a primary volcanic unit.  During Hominy Peak time, the source areas included the uplifted Laramide Teton Range to the south that produced the Archean ages, the active Absaroka volcanic rocks to the north that yielded the Eocene ages, and the underlying Pinyon and Harbelle Formations that yielded that Proterozoic and and Mesozoic Zircons.  The age of 50.3 +/- Ma would make these rocks correlative to other Bridgerian rocks to the east, which would include the Wapiti Formation.


Detrital Zircon U/Pb Provenance of the Lower Cretaceous Cloverly Formation, Big Horn and Powder River Basins, Wyoming


Brett Howell

The Cloverly Formation of Wyoming represents the first synorogenic strata shed from the Sevier highlands of ID and MT.  Detrital zircon U-Pb geochronology was used to determine the provenance of these rocks to better understand the early stages of unroofing of the Sevier highlands.  Lowermost Cloverly Formation Sandstones were sampled at three localities in the Big Horn Basin (#283 zircon total) and two localities in the western Powder River Basin (#185 zircon total).  The Big Horn Basin detrital zircon spectra are dominated by Proterozoic ages (78-83%), which are mainly Grenville age zircons.  Paleozoic zircons represent 10-15% of the spectra of each sample.  Lesser amounts of Mesozoic (1-3%) and Archean (2-6%) also were present.  The Powder River zircon spectra also were dominated by Proterozoic zircons, but the proportion was smaller (55-69%) and the age distribution was much more diverse.  Mesozoic zircons were more prominent (12-23%), Paleozoic (11-13%), and Archean (9-10%) were more abundant as well.  The Proterozoic and Archean zircons were likely recycled from cratonic Mesozoic and Paleozoic strata that was eroded as the Highlands were unroofed.  The Mesozoic zircons were derived from the underlying Idaho Batholith and related plutonic rocks in the region.  It is curious that the more distal Powder River Basin Cloverly localities are more enriched in younger zircons.  This may indicate that distal Cloverly sandstones are comprised of sediment derived from more deeply eroded areas of the Sevier Highlands.


Age and Provenance of proximal Tertiary Quartzite Cobble Conglomerates near Jackson Hole, WY using Detrital Zircon U/Pb Geochronology


Jason Rappe

Quartzite conglomerates Late Cretaceous to Eocene in age outcrop in deposits up to 1-4 km thick in areas of Sublette and Teton Counties.  Our goal in this research is to characterize the age and provenance of these clasts using detrital zircon U/Pb geochronology.  As part of this study, we sampled three different formations (#475; zircon analysis total) at six localities.  The Harebell Formation was sampled at along Buffalo Fork (#85) and Pacific Creek (#83).  The Pinyon Formation was sampled along Pacific Creek (#=43), in the Gros Ventre Mountains (#=98) and at Hominy Peak (#=82).  The Hominy Peak Formation was sampled just south of Hominy Peak (#=84).  Meso- and Paleoproteroic zircons dominated these spectra, ranging from 71-91%.  Grenville and Archean zircon populations also are present, ranging from 1-15% and 5-18%, respectively.  The overlap and similarity indices ranged from 0.62-0.82 and 0.68-0.84, respectively.  These data indicate that the protolith sediment of these quartzites were generated in the Yavapai-Mazatzal orogenic belt to the south and east.  This sediment was transported to the Neoproterozic continental margin of ID and MT and then metamorphosed.  These quartzites were then uplifted during the Sevier Orogeny, were eroded and the clasts were transported eastward into the Western Interior Basin.  It is likely that much of this sediment could have been reworked and recycled into younger conglomeratic units.  The quartzite clasts studied here have identical detrital zircon spectra to quartzite bearing conglomerates of the Fort Union, Willwood and Wapiti Formations to the east.




Email Geo

Department of Geography - Geology
Normal, Il 61790-4400
Phone: (309) 438-7649